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BOUNDARY LAYER CONDITIONS IN FREE CONVECTION 

by 

H. K. K u i k e n *  

1. Introduction 

The great success of the investigations into flow of viscous fluids along 
solid surfaces has to be contributed primarily to the concept of the bound- 
ary layer as proposed by Prandtl [I]. It is well-known to those familiar 
with the complexity of the Navier-Stokes equations that the boundary layer 
approximations are a powerful means of reducing these equations to pro- 
portions which allow them to be solved. At the same time, however, the 
introduction of the boundary layer approximations is accompanied by con- 
ditions restricting the range of application. For example, taking the case 
of forced flow along sohd bodles, Prandtl demved that Re~ >> l has to be 
satisfied for the boundary layer approximations to be valid. 

In free convection the idea has persisted up to now that the condition 
Gr�89 >> 1 has to be satisfied if the solutions are to be drawn from bound- 
ary layer equations. It is the purpose of this paper to show that this con- 
dition is not valid for small or large Prandtl numbers. Therefore it has 
been judged necessary to carefully derive the restricting conditions. A 
great asset of this investigation is that it shows the way to the most nat- 
ural method of solving the free convection boundary layer equations under 
extreme Prandtl number conditions. 

2. Equations 

The mathematical model to be used is shown in figure I. 
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Fig. 1. 

If we restrict ourselves in the analysis to ordinary liquids, the equation 
of state giving the relation between the density and the temperature will 
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be* 

/1, 

T h i s  n a t u r a l l y  is  the l i n e a r  a p p r o x i m a t i o n  to a m o r e  i n t r i c a t e  e q u a t i o n  
of s t a t e .  It  m a y  be u s e d  if  

6 = /3(rw-T,,,) << 1. (2) 

For simplicity we assume T w constant in the present analysis. Apart from 
the equation of state there are four other equations governing the phe- 
nomenon of free eonveetion in steady state, viz., the equation of conti- 
nuity 

a x  (0u) + (0v) = 0, (3) 

the momentum equations 

Ou 0u ~ 0 2 u  o~2u ~ 1 aP 

v = + J ay 2 p ax 

av  av f a 2 v  a2v ) 1 ap u ~ + v - ~ = ~  + - - - - ,  
ax 2 Oy2 p a y  

the energy equation 

g, (4) 

aT aT _ )t ~ 0 2 T  02T } ~T { 8 p  0p } 
u -~x + v Oy pep LO-- ~ + ay  2 + pep u ~ - +  v 

(5) 

(6) 

H e r e  the l a s t  t e r m  of e q u a t i o n  (6) is the d i s s i p a t i o n  func t ion .  
The  t a sk  whieh  now l i e s  b e f o r e  us  is  to d e t e r m i n e  the co n d i t i o n s  u n d e r  

wh ich  the N a v i e r - S t o k e s  e q u a t i o n s  and the e n e r g y  eq u a t i o n  m a y  b e  r e d u e e d  
to t h e i r  b o u n d a r y  l a y e r  a p p r o x i m a t i o n s .  O s t r a c h  [ 2 ]  in p a r t i c u l a r ,  has  
p e r f o r m e d  a g r e a t  dea l  of w o r k  to a c h i e v e  th is  a im .  The  d e r i v a t i o n  to be 
g iven  h e r e  d i f f e r s  in m a n y  r e s p e c t s  f r o m  tha t  of O s t r a e h  who s t a t e s  tha t  
f o r  the G r a s h o f  n u m b e r  

g ~ T  w -T| )Z a 
G r  - (7) 

2 
Y 

l a r g e  enough the s e c o n d  O r d e r  d e r i v a t i v e s  wi th  r e s p e c t  to x m a y  be n e g -  
l e c t e d  in c o m p a r i s o n  with t hose  t aken  wi th  r e s p e c t  to y. T h i s  would m e a n  
tha t  f o r  an i n v i s c i d  f lu id  (u = 0) t h e r e  would a lways  be a b o u n d a r y  l a y e r ,  
which  is  c e r t a i n l y  not  t r u e .  We a n t i c i p a t e  tha t  f o r  s m a l l  v i s c o s i t i e s  O s t r a c h ' s  
co nd i t i on  Gr�89 >> 1 has  to be r e p l a c e d  by  a cond i t i on  not  i nvo lv ing  the 
v i s c o s i t y .  In d e r i v i n g  the r e s t r i c t i n g  c o n d i t i o n s  one has  p r o b a b l y  b e e n  
i n f l u e n c e d  too m u c h  by  the a c h i e v e m e n t s  of  f o r c e d  l a m i n a r  b o u n d a r y  l a y e r  
f low.  A d e s i r e  f o r  p a r a l l e l i s m  m a d e  e a r l i e r  i n v e s t i g a t o r s  d e e i d e  to i m p o s e  
the c o n d i t i o n  that  the v i s c o u s - a n d  the i n e r t i a  t e r m s  had to be of the s a m e  
o r d e r  of m a g n i t u d e  in the f r e e  c o n v e c t i o n  b o u n d a r y  l a y e r .  T h i s  is  in c l o s e  

* For N o m e n c l a t u r e ,  see p. 104.  
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a n a l o g y  wi th  the e a r l i e r  f ind ings  of f o r c e d  l a m i n a r  b o u n d a r y  l a y e r  flow. 
As  a c o n s e q u e n c e  the P r a n d i l  n u m b e r  

vpcp 
o- = X (8) 

r e p r e s e n t i n g  the c o n n e c t i o n  b e t w e e n  the v i s c o u s - a n d  the t e m p e r a t u r e  b o u n d -  
a r y  l a y e r  a p p e a r e d  in the e n e r g y  equa t ion .  I t  is ,  h o w e v e r ,  a known fac t  
tha t  the a n s w e r  to the q u e s t i o n  as  to which  t e r m s  h a v e  to be of the s a m e  
o r d e r  of m a g n i t u d e  in the e q u a t i o n s  of f r e e  c o n v e c t i o n  depends  p r i m a r i l y  
on the va lue  of the P r a n d t l  n u m b e r .  So r a t h e r  than t r y i n g  to find one 
s ing le  e x p r e s s i o n  on wh ich  to dec ide  the a p p l i c a b i l i t y  of the b o u n d a r y  l a y e r  
a p p r o x i m a t i o n s  we have  to e x p e c t  d i f f e r e n t  c r i t e r i a  f o r  d i f f e r e n t  P r a n d t l  
n u m b e r s .  A l t h o u g h  the b o u n d a r y  l a y e r  e q u a t i o n s  u l t i m a t e l y  found by O s t r a c h  
a r e  c o r r e c t  the d e r i v a t i o n  l e a d s  in s o m e  e a s e s  to dub ious  c o n c l u s i o n s  about  
the c o n d i t i o n s  which ,  on b e i n g  s a t i s f i e d ,  p e r m i t  the b o u n d a r y  l a y e r  up -  
p r o x i m a t i o n s .  As  an e x a m p l e  we m a y  give,  that  i n s t e a d  of Gr  l >> 1 we have  
to put  cr Gr�89 >> 1 as  the cond i t i on  j u s t i f y i n g  the b o u n d a r y  l a y e r  a p p r o x i -  
m a t i o n s  at  low P r a n d t l  n u m b e r s  ( n e a r l y  i n v i s c i d  f luid).  T h i s  wil l  be p r o v e d  
l a t e r  on. 

T h i s  l a s t  cond i t i on  is found by c o n s i d e r i n g  that  f o r  cr < 1 the t e m p e r a t u r e  
b o u n d a r y  l a y e r  is a l w a y s  s o m e w h a t  t h i c k e r  than  the v e l o c i t y  b o u n d a r y  l a y e r .  
M o r e o v e r ,  the v i s c o u s  e f f ec t s  d e c r e a s e  wi th  e.  T h a t  is why  fo r  ~ < 1 the 
b o u n d a r y  l a y e r  equa t i ons  wil l  be d e r i v e d  t h r o u g h  s t a t i n g  that  f o r  s m a l l  
P r a n d t l  n u m b e r s  the c o n v e c t i o n - a n d  c o n d u e t i o n  t e r m s  of the e n e r g y  e q u a -  
t ion have  to be of the s a m e  o r d e r  of m a g n i t u d e .  In the equa t i ons  ob ta ined  
the P r a n d t l  n u m b e r  wi l l  be the c o e f f i c i e n t  of the v i s c o u s  t e r m  thus a s -  
s e r t i n g  that  f o r  ~ --* 0 the v i s e o u s  s t r e s s e s  a r e  of m i n o r  i m p o r t a n c e .  

It  m a y  be e l e a r  f r o m  these  s t a t e m e n t s  tha t  t h e r e  is  s t i l l  need  f o r  an 
i n v e s t i g a t i o n ,  h a v i n g  the c h a r a c t e r  of a s e r u t i n y ,  c o n c e r n i n g  the cond i t i ons  
p e r m i t t i n g  the b o u n d a r y  l a y e r  a p p r o x i m a t i o n s .  

3. Non-dimensional variables 

Let us introduce non-dimensional variables -indicated with bars- as 
follows 

x = Z x, y = 5s u = Ufi, 

p = p~g, p = p| T = W. + (T w-T~)T .  
(9) 

6, ~ and U will be chosen later on in such a way as to make x, y and 
of order unity in the boundary layer. Apparently the equation of state (I) 
will become 

~ = I - c T .  (10) 

Bearing in mind that 6,~ is the thickness of the boundary layer an inte- 
gration of equation (3) across the boundary layer gives 

{ sl v = - U6 ~xx (~fi)dy . (11) 

O b v i o u s l y  v=0(US) so  that  in add i t ion  to (9) we m a y  i n t r o d u c e  

v = 5Uy. (12) 

Subs t i t u t i ng  (9), (10) and (12) in (3), (4), (5) and (6) g ives  
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8~ + 8__~, 6 { 8' 8'} 
8--~ oy I-~T 5yf+v~ : o, 

- 8~ -- 8~ __ 12 1 I 82fi + 52 82U } 
u ~-~ + v 8y UZ 62 8y2 8~ 2 

1 8p gZ 
1-}-r K~ u 2" 

8V 8"9 __ U 1 f 82V + 62 82'7 } 
~ - ~  + V 8y UZ 52 8y 2 8~ 2 

+ 

i l a p  
1-eT 62 8y ' 

-- + V--ST _ k 1 1 { 82T + 52 .82 )T- 
~ 8y p~epIU 52 l-cT" 8y 2 8~ 2 

cp(T w-T~) ~ ~ + v 

+ cp~(T w-T.) 52 i -  ~ + ~ + 

(13) 

(14) 

(15) 

(87 52 8V) 2 2 (8~ ~V) 2 62 ] (16) + ~-~y+ ~ - - ~  ~+-~ �9 

Let us first direct our attention to equation (15), With respect to the orders 
of magnitude of the inertia- and the viscous terms we distinguish three 
different eases. The inertia terms can be larger, equal or smaller than 
the viscous terms. For the former two cases it is clear that the bound- 
arey layer approximation to equation (15) is 

al~ = 0(52) 
oy 

Since 5 is supposed 
reduces to 

to be small (52<<1) it is obvious that equation (15) 

a_~ = o (17) ay 

If, however, the viscous terms are larger than the inertia terms we have 

oy  

Upon imposing the condition 

/J 
b-~ << 1 (18) 

for this special ease it follows that equation (17) can still be used as the 
the boundary layer approximation to equation (15). 
Turning to equation (14) we see that it will reduce to 
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- gi (19) 
~ U 2 

as y -~ ~. This follows directly from boundary conditions ~ -* 0, T -, 0 
as y -~ co. On account of equation (17) the expression (19) is also valid in 
the boundary layer. Insertion of (19) in (14) yields 

a~ a~ { ~  1 a2~ 
-~ + v ~ -  = 6 2 aY 2 ----+e-~IT}{1+u 2 o(c)} (20) 

Here we have already made use of 52<<I. Under the same condition equa- 
tion (16) will become 

f 1 
~ x  + V -~y = I P~ep lU 52 8y2 cp (Tw-T~)  ~ + 

CpZ(%-T~) ~2 5-Y 1 + O(c) , (21) 

while for the equation of continuity we find 

8~ OV O(e) (22) 
a x + g  = 

We have now arrived at the important question as to which conditions 
should determine 5. If we decide that after dropping the O(c) terms every 
terra of equation (20) has to be of the same order of magnitude, we would 
obtain the traditional results. It is felt, however, that in this way too 
much emphasis is put on the momentum equation. In free convection the 
energy equation should also receive adequate attention since it is the 
temperature-differences which lie at the very root of the phenomenon. 
The known results of free convection suggest that our investigation be split 
up in two different studies. One should be concerned with small Prandtl 
numbers (~ < i), the other should refer to large Pradntl numbers (~ > i). 

4. Small Prandtl  numbers  

F i r s t  we i n v e s t i g a t e  low P r a n d t l  n u m b e r s ,  i . e .  n e a r l y  i n v i s e i d  f lu ids .  
We i m p o s e  the c o n d i t i o n  tha t  the c o n v e c t i o n -  and c o n d u c t i o n  t e r m s  of e -  
qua t ion  (21) be of  the s a m e  o r d e r  of m a g n i t u d e .  H e n c e  

52 = X 
p cp~U (23) 

Since  in f r e e  c o n v e c t i o n  the so le  d r i v i n g  f o r c e  is  r e p r e s e n t e d  by  the b u o y -  
a n c y  t e r m  th is  t e r m  m u s t  be of the s a m e  o r d e r  of m a g n i t u d e  as  the l a r g e s t  
t e r m s  of e q u a t i o n  (20).  In the p r e s e n t  c a s e  t h e s e  o b v i o u s l y  a r e  the i n e r t i a  
t e r m s .  We c o n s e q u e n t l y  f ind 

U 2 = eg2 = f igZ(Tw-T, )  (24) 

The combined knowledge of (23) and (24) yields 

62 = ~-I Gr-} 

Obviously for small Prandtl numbers the condition 

(25) 
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Gr�89 >> 1 (26) 

has to be satisfied for the boundary layer approximations to be valid. 
Since Cp is usually very large and fi very small the terms 

~ g ~ T ~  uU 1__  _ c~ g/32 
Cp(Tw-T~) ; Cp~(Tw-T~) 52 Cp 

(27) 

are small. Hence the two last terms of equation (21) may be neglected. 
On finally imposing the condition r << 1 (2) we find for small Prandtl 
numbers the set of governing boundary layer equations 

0F + 3V 
aT ~ : o, (28) 

u ~ x  + Vr-~y = a + T , (29) 
ay  e 

aT aT a2T - (3o) ~ + V ay ay2 

It may be noted that the Prandtl number occupies an important position 
in determining the influence of the viscous stresses in a basically invis- 
cid fluid. Since in the analysis of Ostrach the viscous stresses are judged 
to be of the same order of magnitude as the inertia terms, his analysis 
evidently appliers to the viscous part of the free convection boundary layer 
which is known to approach zero as a-, 0. So his analysis can give in- 
teresting information about !he ratio of the thickness of the viscous layer 
5 v and the thickness of the full free convection boundary layer. On re- 
placing 5 in (9) and (12) by 5 v and making all terms in the momentum 
equation of equal order of magnitude we readily derive 

1 

5 v = G r  -~ (31) 

With (25) this  c l e a r l y  g ives  

5 v / 5  = o �89 . (32) 

The boundary layer momentum- and energy equation now obviously are 
given by 

a~ o'~ __a2~ + T , (33) 
~ K + v  a-~= ~ 2  

~ aT a T - }  O 2 "  (34) 
a ~-~-x + V~-~- aY s , 

wh ich  is ,  as  f a r  as  the p o s i t i o n  a o c c u p i e s  is  c o n c e r n e d ,  the t r a d i t i o n a l  
way  of p r e s e n t i n g  the b o u n d a r y  l a y e r  eq u a t i o n s  of f r e e  c o n v e c t i o n .  Th e  
p r o b l e m  of s m a l l  P r a n d f l  n u m b e r  f r e e  c o n v e c t i o n  has  b een  s o l v e d  e x p l i c -  
i t l y  f o r  the i s o t h e r m a l  f l a t  p l a t e  by m e a n s  of the m e t h o d  of m a t c h e d  a -  
s y m p t o t i c  e x p a n s i o n s  E3~. We a c c o r d i n g l y  m a y  r e f e r  to th i s  w o r k  f o r  
f u r t h e r  i n f o r m a t i o n .  
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5. Large Prandtl  numbers  

As we have  r e m a r k e d  e a r l i e r  the t h e r m a l - a n d  the v e l o c i t y  b o u n d a r y  
l a y e r  a r e  of about  the s a m e  t h i c k n e s s  f o r  ~ < 1, the f o r m e r  be ing  s o m e -  
wha t  t h i c k e r  than the l a t t e r .  C o n c e r n i n g  this  we m a y  r e f e r  to [ 3 ]  o r  to 
the w o r k  of S p a r r o w  & G r e g g  [ 4 ]  on low P r a n d t l  n u m b e r s .  T h i s  is c o n -  
t r a r y  to the s i t u a t i o n  in f o r c e d  f lows w h e r e  the v e l o c i t y  l a y e r  is  d r o w n e d  
in the t h e r m a l  l a y e r  as  a - - ,  0. In f r e e  c o n v e c t i o n  an i n c r e a s i n g  p a r t  (as  
c~ -~ 0) of the v e l o c i t y  l a y e r  is i n v i s c i d  so  tha t  the P r a n d t t  n u m b e r  c a n n o t  
s u p p l y  i n f o r m a t i o n  abou t  the r e l a t i o n  b e t w e e n  the t h e r m a l -  and the c o m p l e t e  
v e l o c i t y  b o u n d a r y  l a y e r .  F o r  cr > 1, h o w e v e r ,  the p h y s i c a l  p a t t e r n  r e f l e c t s  
the s a m e  f e a t u r e s  as  in f o r c e d  c o n v e c t i o n ,  i . e .  the t h e r m a l  b o u n d a r y  
l a y e r  is  thin in c o m p a r i s o n  wi th  the v e l o c i t y  b o u n d a r y  l a y e r .  The  v e l o c i t y  
b o u n d a r y  l a y e r  is t o t a l l y  v i s c o u s .  I f  we fix our  a t t en t i on  now on vers t  l a r g e  
v a l u e s  of e ( a  >> 1) the fo l lowing  p i c t u r e  e m e r g e s  ( see  E2~ o r  [5 J ) .  L e t  
us  c o n s i d e r  a f luid of  l a r g e  v i s c o s i t y  and s m a l l  t h e r m a l  c o n d u c t i v i t y .  F o r  
such  a f luid the P r a n d t l  n u m b e r  is l a r g e .  Now, obv ious ly ,  the t e m p e r a t u r e  
b o u n d a r y  l a y e r  wil l  be v e r y  thin thus on ly  a d m i t t i n g  b u o y a n c y  f o r c e s  in 
this  v e r y  thin l a y e r .  In  this  l a y e r  the f luid wil l  be d r a g g e d  u p w a r d .  Due 
to the l a r g e  v i s c o s i t y  the f luid wi l l  a l s o  m o v e  u p w a r d s  in an a d j a c e n t  l a y e r  
of c o n s i d e r a b l e  t h i c k n e s s  w h e r e  no b u o y a n c y  f o r c e s  ex i s t .  We o b v i o u s l y  
have  to u se  the fo l l owing  m o d e l  in d e r i v i n g  the b o u n d a r y  l a y e r  equa t i ons  
and in s t a t i n g  the c o n d i t i o n s  of t h e i r  a p p l i c a b i l i t y .  In the thin t h e r m a l  b o u n d -  
a r y  l a y e r  the c o n v e c t i o n  t e r m s  and the c o n d u c t i o n  t e r m s  a r e  of the s a m e  
o r d e r  of m a g n i t u d e .  In t h e  m o m e n t u m  equa t ion  the b u o y a n c y  t e r m  and the 
v i s c o u s  t e r m  have  to be of the s a m e  o r d e r  of m a g n i t u d e .  Mak ing  u se  of 
t he se  c o n s i d e r a t i o n s  we m a y  find the t h i c k n e s s  of the t h e r m a l  b o u n d a r y  
l a y e r  and,  wha t  i s  v e r y  i m p o r t a n t ,  a c h a r a c t e r i s t i c  v e l o c i t y .  Since in the 
l a y e r  w h e r e  no b u o y a n c y  f o r c e s  a r e  p r e s e n t  the f low can  on ly  be r e t a r d e d  
this  v e l o c i t y  m u s t  a l s o  be the c h a r a c t e r i s t i c  v e l o c i t y  of the c o m p l e t e  v i s -  
cous  l a y e r .  U s i n g  this  v e l o c i t y  and the cond i t i on  tha t  in the v i s c o u s  l a y e r  
the i n e r t i a -  and the v i s c o u s  t e r m s  a r e  of the s a m e  o r d e r  of m a g n i t u d e  
we c a n  d e r i v e  an e x p r e s s i o n  fo r  the t h i c k n e s s  of the f r e e  c o n v e c t i o n  b o u n d -  
a r y  l a y e r  at  l a r g e  P r a n d t l  n u m b e r .  H e r e  the o u t e r  f r i n g e s  of the v i s c o u s  
l a y e r  d e t e r m i n e  this  t h i c k n e s s .  

Now f ix ing  o u r  a t t e n t i o n  f i r s t  on the t h e r m a l  l a y e r ,  the cond i t i on  of the 
c o n d u c t i o n -  and c o n v e c t i o n  t e r m s  be ing  of c o m p a r a b l e  m a g n i t u d e  l e a d s  to 
(see  equ.  (21)) 

2 X 
~T - p=Cp•U (35) 

The suffix T naturally refers to the fact that 6 T is not the thickness of 
the complete free convection boundary layer but only of that part of it 
where tangible temperature-differences with the ambient fluid exist. Our 
condition that the buoyancy term matches with the viscous term leads to 
(equ. (20)) 

g#Z2(Tw-T ) 
62 U = u T (36) 

Subs t i t u t i on  of (35) in (36) r e n d e r s  

~,g(Tw-T) 
U 2 = 

o- (37) 

and 

--I -�89 
62 = a G r  (38) 

T 
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T h e  f a c t ,  a s  e x p r e s s e d  by  (37), t ha t  the v e l o c i t y  d e c r e a s e s  a s  ~ i n c r e a s e s  
i s  in c o m p l e t e  a g r e e m e n t  wi th  e a r l i e r  f i nd ings  [-2] .  A s  h a s  b e e n  r e m a r k e d  
a b o v e ,  the c h a r a c t e r  of a f r e e  c o n v e c t i o n  b o u n d a r y  l a y e r  a t  l a r g e  P r a n d t l  
n u m b e r  is  one of a v i s c o u s  l a y e r  in f o r c e d  f low, the f o r c e  b e i n g  e x e r t e d  
t h r o u g h  b u o y a n c y  in a v e r y  th in  l a y e r  a d j a c e n t  to the wa l l .  As  a c o n s e -  
q u e n c e  we can  on ly  i m p o s e  one c o n d i t i o n  f o r  d e t e r m i n i n g  the t h i c k n e s s  of 
the layer. This condition naturally is the same as the one used by Prandtl 
[I] in discussing a viscous boundary layer of forced flow: it expresses, 
that in the layer the inertia- and the viscous terms are of the same order 
of magnitude. Using (20) we find 

52 _ v UZ (39) 

F o r  r e a s o n s  a d v a n c e d  e a r l i e r  we m a y  u s e  e q u a t i o n  (37) as  e x p r e s s i n g  
a d e q u a t e l y  the c h a r a c t e r i s t i c  v e l o c i t y  in e q u a t i o n  (39).  T h i s  l e a d s  to 

52 = ~�89 G r  -�89 (40) 

As the condition 62<<1 coincides with (18)we have to impose-in case 
is large- 

i 1 
~-~Gr~  >> 1 (41) 

for the boundary layer approximations to he valid. Another interesting 
outcome of the present analysis is that it supplies evidence about both the 
thermal- and the viscous layer. Using (38) and (40) we find 

5 T / 5  = ~'�89 (42) 

T h e  f i g u r e s  o f  O s t r a c h  [ 2 ]  abou t  f r e e  c o n v e c t i o n  a t  l a r g e  F r a n d t l  n u m b e r s  
c o n f i r m  q u a l i t a t i v e l y  e x p r e s s i o n  (42).  As  one is  l e f t  w i th  a c e r t a i n  a m o u n t  
o f  u n c e r t a i n t y  in c h o o s i n g  the o u t e r  edge  of a b o u n d a r y  l a y e r  the = s ign  
cou ld  be  r e p l a c e d  b e s t  b y  a ~ s i gn .  B e a r i n g  in  m i n d  tha t  f o r  a < 1 the 
t h e r m a l  b o u n d a r y  l a y e r  i s  p r e d o m i n a n t ,  wh i l e  f o r  ~ > 1 th i s  i s  the c a s e  
w i th  the v i s c o u s  l a y e r ,  bo th  f o r m u l a s  (32) and (42) l e a d  to 

5 v / 5T ~, 0-�89 (43) 

After having thrown light upon the different aspects of large Prandtl 
number free convection boundary layer flow, it may have become clear 
that the only way to solve it realistically is be using the method of matched 
inner- and outer expansions. The inner problem can be studied by working 
in the exiguous dimensions of the thermal boundary layer. On replacing 
5 in (9) and (12) bY 6~ the substitution of (37) and (38) in (20) and (21) 
then leads to the followlng momentum- and energy equation 

8~ 8~ I ~ I 

aY aT ~a~Y (45) 

In solving these equations one has to use the inner boundary conditions 
(conditions at the wall). The remaining conditions for y-, oo have to be 
found through matching with the solution of the outer problem. 

Inserting the expressions (37) and (39) in the equations (20) and (21) we 
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scale up to the larger dimensions of the complete viscous layer. The 
equations become 

~)~ 02ii _ 

B~ = c + ~ T, (46) 

~T 3T } __ 02T (47) 
~ - ~  +vy~ aY 2 

At first sight it seems rather contradictory that the buoyancy term in the 
momentum equation eontains the large parameter ft. We should, however, 
remember that for the main term of the outer expansion the temperature 
is exactly equal to zero. As a consequence the buoyancy term plays, as 
expected, no part in the main term of the outer expansion. This main term 
is a soluti()n of the differential equation 

~--~x + v - g - ~  - 3Y 2 (48) 

and has to satisfy the outer boundary conditions ~ -~ 0 as ~ -~oo. The re- 
maining inner boundary conditions have to be found through matching with 
the inner problem according to the well-known matching rule (see [6]). 

The author is pursuing further study on this subject by applying matched 
asymptotic expansions to a large Prandtl number problem. 

6. Conclusions 

Although separate analyses have been performed for extreme values of 
the Prandtl number it may be expeeted that the results drawn therefrom 
are qualitatively consistent for a larger Prandtl number range as long as 
in this range the basic assumptions remain the same qualitatively. Conse- 
quently the results obtained for small Prandtl numbers are expected to 
give information for cr < l, while those found for large Prandtl numbers 
are believed to be valuable for ~ > i. Hence for ~ < I, we have that the 
boundary layer approximations are valid provided 

2 

/ /  
/ 

/ 

I "x 

1 , o "  

Fig. 2. Conditions for boundary layer approximations, Double shaded: present work; shlgle shaded: Ostrach 
[2"1. 
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Gr�89 > M. (49) 

H e r e  we have  r e p h r a s e d  e q u a t i o n  (26) t h r o u g h  i n t r o d u c t i o n  of a v e r y  l a r g e  
n u m b e r  M so  as  to give  i t  a m o r e  de f in i t e  e h a r a c t e r .  F o r  c~ > 1 we find 
t h r o u g h  (41) the ana log '~as  c o n d i t i o n  

a-�89 Gr�89 > M." (50) 

A l though  n e a r  ~ = 1 the g r a p h  of f i g u r e  2 m a y  h a v e  to be c h a n g e d  s o m e -  
w h a t  i t  d e a r l y  e x h i b i t s  the r e s u l t  of the p r e s e n t  a n a l y s i s .  Whi le  O s t r a c h ' s  
a n a l y s i s  m e r e l y  g i v e s  G r � 8 9  the p r e s e n t  i n v e s t i g a t i o n s  r e v e a l  tha t  s t r i c t e r  
r u l e s  h a v e  to be  i m p o s e d  upon  the G r a s h o f  n u m b e r  if  the b o u n d a r y  l a y e r  
a p p r o x i m a t i o n s  a r e  to be  va l id .  T h e  s i n g l e  s h a d e d  r e g i o n  a p p l i e s  to the 
c o n d i t i o n  of O s t r a c h  whi le  the double  s h a d e d  r e g i o n  is  a r e s u l t  of the 
p r e s e n t  i n v e s t i g a t i o n s .  

A C K N O W L E D G E M E N T S  

The  a u t h o r  is  i n d e b t e d  to P r o f .  d r .  R. T i m m a n  who  i n s p i r e d  h i m  to i n i t i a t e  
th i s  i n v e s t i g a t i o n .  

N OMENCLA T URE 

c 
P 

g 
Gr 
z 

M 

P 
T 

T w 
T= 
n 

U 
V 

X 

Y 

specific heat  
acceleration due to gravity 
Grashof number (7) 
characteristic length (9) 
large number 
pressure 
temperature 
wall- temperature 
ambient  temperature 
longitudinal velocity (x-direction) 
characteristic velocity (9) 
normal velocity (y-direction) 
longitudinal coordinate (along the plate) 
normal coordinate (normal to the plate) 

Greek symbols 

6 
6 

v 

~T 

) .  

P 
& 
(Y 

coefficient of thermal  expansion 
non-dimensional  thickness of the boundary layer (9) 
non-dimensional  thickness of the viscous boundary layer 
non-dimensional  thickness of the thermal  boundary layer 

small  coefficient (2) 
coefficient of heat conduction 
kinematic viscosity 
density of the fluid 
density of the ambient  fluid 
Prandtl number (8) 
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