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BOUNDARY LAYER CONDITIONS IN FREE CONVECTION

by
H. K. Kuiken*

1. Introduction

The great success of the investigations into flow of viscous fluids along
solid surfaces has to be contributed primarily to the concept of the bound-
ary layer as proposed by Prandtl [1]. It is well-known to those familiar
with the complexity of the Navier-Stokes equations that the boundary layer
approximations are a powerful means of reducing these equations to pro-
portions which allow them to be solved. At the same time, however, the
introduction of the boundary layer approximations is accompanied by con-
ditions restricting the range of application. For example, taking the case
of forced flow along solid bodies, Prandtl derived that Rez >> 1 has to be
satisfied for the boundary layer approximations to be wvalid.

In free convection the idea has persisted up to now that the condition
Grt >> 1 has to be satisfied if the solutions are to be drawn from bound-
ary layer equations, It is the purpose of this paper to show that this con-
dition is not valid for small or large Prandtl numbers., Therefore it has
been judged necessary to carefully derive the restricting conditions. A
great asset of this investigation is that it shows the way to the most nat-
ural method of solving the free convection boundary layer equations under
extreme Prandtl number conditions.

2. Equalions

The mathematical model to be used is shown in figure 1,
/\
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Fig. 1.

If we restrict ourselves in the analysis to ordinary liquids, the equation
of state giving the relation between the density and the temperature will

* Dept. Math, Techn,Univ. Delft, The Netherlands.
Present address: Unsready Aerodynamics Laboratory, National Research Council, Ottawa,



96 H.K.Kuiken

P =n { 1 - B(T'Tm)}' (1)

This naturally is the linear approximation to a more intricate equation
of state, It may be used if

bex*

€ = B(T, -T,) << 1. (2)

For simplicity we assume T, constant in the present analysis. Apart from
the equation of state there are four other equations governing the phe-
nomenon of free convection in steady state, viz., the equation of conti-
nuity

s (ow) + 220w = 0, (3)

the momentum equations
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the energy equation
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Here the last term of equation (6) is the dissipation function.

The task which now lies before us is to determine the conditions under
which the Navier-Stokes equations and the energy equation may be.reduced
to their boundary layer approximations. Ostrach [2] in particular, has
performed a great deal of work to achieve this aim. The derivation to be
given here differs in many respects from that of Ostrach who states that
for the Grashof number

gBT,, ~T, )2°
Gr = ————— (7)

1/2

large enough the second order derivatives with respect to x may be neg-
lected in comparison with those taken with respect to y. This would mean
that for an inviscid fluid (v = 0) there would always be a boundary layer,
which is certainlynottrue. We anticipate that for small viscosities Ostrach's
condition Gr# >> 1 has to be replaced by a condition not involving the
viscosity., In deriving the restricting conditions one has probably been
influenced too much by the achievements of forced laminar boundary layer
flow. A desire for parallelism made earlier investigators decide to impose
the condition that the viscous-and the inertia terms had to be of the same
order of magnitude in the free convection boundary layer. This is in close

* For Nomenclature, see p. 104,
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analogy with the earlier findings of forced laminar boundary layer flow.
As a consequence the Prandtl number

5 = (8)
DY

representing the connection between the viscous-and the temperature bound-
ary layer appeared in the energy equation. It is, however, a known fact
that the answer to the question as to which terms have to be of the same
order of magnitude in the equations of free convection depends primarily
on the value of the Prandtl number. So rather than trying to find one
single expression on which to decide the applicability of the boundary layer
approximations we have to expect different criteria for different Prandtl
numbers, Although the boundary layer equations ultimately found by Ostrach
are correct the derivation leads in some cases to dubious conclusions about
the conditions which, on being satisfied, permit the boundary layer ap-
proximations. As an example we may give, thatinsteadofGrz >> 1 we have
to put ¢ Grz >> 1 as the condition justifying the boundary layer approxi-
mations at low Prandtl numbers (nearly inviscid fluid). This will be proved
later on,

This last condition is found by considering that for ¢ < 1 the temperature
boundary layer is always somewhat thicker than the velocity boundary layer.
Moreover, the viscous effects decrease with o. That is why for o < 1 the
boundary layer equations will be derived through stating that for small
Prandtl numbers the convection-~ and conduction terms of the energy equa-
tion have to be of the same order of magnitude. In the equations obtained
the Prandtl number will be the coefficient of the viscous term thus as-
serting that for ¢ - 0 the viscous stresses are of minor importance,

It may be clear from these statements that there is still need for an
investigation, having the character of a scrutiny, concerning the conditions
permitting the boundary layer approximations.

3. Non-dimensional variables

Let us introduce non-dimensional variables -indicated with bars- as
follows

x = I%, y = dy, u = U,

(9)

p =P p=pUP, T=T,+(T,-T,)T.

6, L and U will be chosen later on in such a way as to make X, § and T
of order unity in the boundary layer. Apparently the equation of state (1)
will become .

p=1-¢€T. (19)

Bearing in mind that 6 is the thickness of the boundary layer an inte-
gration of equation (3) across the boundary layer gives

1
v = - Ud{—%—i%(ﬁﬁ)dy} . (11)

Obviously v=0(Us) so that in addition to (9) we may introduce
v = 8Uv. (12)

Substituting (9), (10) and (12) in (3), (4), (5) and (6) gives
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‘Let us first direct our attention to equation (15), With respect to the orders
of magnitude of the inertia- and the viscous terms we distinguish three
different cases., The inertia terms can be larger, equal or smaller than
the viscous terms. For the former two cases it is clear that the bound-
arey layer approximation to equation (15) is

9y

Since & is supposed to be small (62 <<1) it is obvious that equation (15}
reduces to

% - o)

3 . '
5 " 0 (17)

If, however, the viscous terms are larger than the inertia terms we have

5 - olut)

Upon imposing the condition

£
o << 1 (18)
for this special case it follows that equation (17) can still be used as the

the boundary layer approximation to equation (15).
Turning to equation (14) we see that it will reduce to
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3. & (19)

as § -»o. This follows directly from boundary conditions @ - 0, T - 0
as § — c. On account of equation (17) the expression (19) is also valid in
the boundary layer. Insertion of (19) in (14) yields

- 9T _ 1 9%, egd = 20
+ 7 gz s {752 - UQT}{1+O(€)}. (20)

=1}
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Here we have already made use of §2<<1., Under the same condition equa-
tion (16) will become

ﬁa—T+va—T= A iazT—BgX{T+ -T)T}ﬁ+
9% oy p.,.,cPZU 52 85‘72 cp(Ty,-To)
vU 1 (au) { }
b ———s 1+ 0%)}, (21)
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while for the equation of continuity we find

o, ov
=+ ey - 09 (22)

We have now arrived at the important question as to which conditions
should determine 6. If we decide that after dropping the O(€) terms every
term of equation (20) has to be of the same order of magnltude we would
obtain the traditional results. It is felt, however, that in this way too
much emphasis is put on the momentum equation. In free convection the
energy equation should also receive adequate attention since it is the
temperature -differences which lie at the very root of the phenomenon.
The known results of free convection suggest that our investigation be split
up in two different studies. One should ‘be concerned with small Prandtl
numbers (o < 1), the other should refer to large Pradntl numbers (o > 1).

4. Swmall Prandtl numbers

First we investigate low Prandtl numbers, i.e. nearly inviscid fluids.
We impose the condition that the convection- and conduction terms of e-
quation (21) be of the same order of magnitude. Hence

2 _ A
Xl (23)

Since in free convection the sole driving force is represented by the buoy-
ancy term this term must be of the same order of magnitude as the largest
terms of equation (20). In the present case these obviously are the inertia
terms. We consequently find

U® = egk = Bgl(T, ~T.) (24)

The combined knowledge of (23) and (24) yields

1

62 = cr'lGr'Z (25)

Obviocusly for small Prandtl numbers the condition
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o Grz > 1 (26)
has to be satisfied for the boundary layer approximations to be valid.
Since c, is usually very large and B very small the terms
BetT, VU 1 gpl
c (T -T.) * ©c UT.-T.) .2 ¢ (27)
plTw e p MW el 52 P
are small, Hence the two last terms of equation (21) may be neglected.

On finally imposing the condition € << 1 (2) we find for small Prandtl
numbers the set of governing boundary layer equations
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It may be noted that the Prandtl number occupies an important position
in determining the influence of the viscous stresses in a basically invis-
cid fluid. Since in the analysis of Ostrach the viscous stresses are judged
to be of the same order of magnitude as the inertia terms, his analysis
ev1dent1y applies to the viscous part of the free convection boundary layer
which is known to approach zero as o — 0. So his analysis can give in-
teresting information about the ratio of the thickness of the viscous layer
6, and the thickness of the full free convection boundary layer. On re-
placing 6 in (9) and (12) by 6, and making all terms in the momentum
equation of equal order of magnitude we readily derive

5 = Grt . (31)

5./6 = ot . (32)

The boundary layer momentum- and energy equation now obviously are
given by

_ — 2—
ﬁé—aEJrvsﬂ_:a—quT, (33)
X Y 3—}72
_ o
o ﬁ%+vgr§ 0" T s (34)

ay 2

which is, as far as the position ¢ occupies is concerned, the traditional
way of presenting the boundary layer equations of free convection. The
problem of small Prandtl number free convection has been solved explic-
itly for the isothermal flat plate by means of the method of matched a-
symptotic expansions [3]. We accordingly may refer to this work for
further information.
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5. Larvge Prandtl nuwbevrs

As we have remarked earlier the thermal- and the velocity boundary
layer are of about the same thickness for o < 1, the former being some-
what thicker than the latter. Concerning this we may refer to [3] or to
the work of Sparrow & Gregg [4] on low Prandtl numbers. This is con-
trary to the situation in forced flows where the velocity layer is drowned
in the thermal layer as o — 0, In free convection an increasing part (as
o — 0) of the velocity layer is inviscid so that the Prandtl number cannot
supply information about the relation between the thermal- and the complete
velocity boundary layer. For o > 1, however, the physical pattern reflects
the same features as in forced convection, i,e. the thermal boundary
layer is thin in comparison with the velocity boundary layer. The velocity
boundary layer is totally viscous. If we fix our attention now on very large
values of o (o > 1) the following picture emerges (see [ 2] or [5]). Let
us consider a fluid of large viscosity and small thermal conductivity. For
such a fluid the Prandtl number is large. Now, obviously, the temperature
boundary layer will be very thin thus only admitting buoyancy forces in
this very thin layer. In this layer the fluid will be dragged upward. Due
to the large viscosity the fluid will also move upwards in an adjacent layer
of considerable thickness where no buoyancy forces exist. We obviously
have to use the following model in deriving the boundary layer equations
and in stating the conditions of their applicability. In the thin thermal bound-
ary layer the convection terms and the conduction terms are of the same
order of magnitude. In the momentum equation the buoyancy term and the
viscous term have to be of the same order of magnitude. Making use of
these considerations we may find the thickness of the thermal boundary
layer and, what is very important, a characteristic velocity. Since in the
layer where no buoyancy forces are present the flow can only be retarded
this velocity must also be the characteristic velocity of the complete vis-
cous layer, Using this velocity and the condition that in the viscous layer
the inertia- and the viscous terms are of the same order of magnitude
we can derive an expression for the thickness of the free convection bound-
ary layer at large Prandtl number. Here the outer fringes of the viscous
layer determine this thickness.

Now fixing our attention first on the thermal layer, the condition of the
conduction- and convection terms being of comparable magnitude leads to
(see equ. (21))

2 _ A
by = f.c, LU (35)

The suffix T naturally refers to the fact that &, is not the thickness of
the complete free convection boundary layer but only of that part of it
where tangible temperature-differences with the ambient fluid exist. Our
condition that the buoyancy term matches with the viscous term leads to

(equ. (20))
gBt* (T, -T,.)

2

Substitution of (35) in (36) renders

e BUT,T)

and

& =0t art | (38)
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The fact, as expressed by (37), that the velocity decreases as ¢ increases
is in complete agreement with earlier findings [2]. As has been remarked
above, the character of a free convection boundary layer at large Prandtl
number is one of a viscous layer in forced flow, the force being exerted
through buoyancy in a very thin layer adjacent to the wall. As a conse-
gquence we can only impose one condition for determining the thickness of
the layer. This condition naturally is the same as the one used by Prandtl
[1] in discussing a viscous boundary layer of forced flow: it expresses,
that in the layer the inertia- and the viscous terms are of the same order
of magnitude, Using (20) we find

v
§2 = UL (39)

For reasons advanced earlier we may use equation (37) as expressing
adequately the characteristic velocity in equation (39). This leads to

52 = of grt (40)

As the condition %<1 coincides with (18) we have to impose-in case o
is large-

g3Gr: >> 1 (41)
for the boundary layer approximations to be valid. Anocther interesting

outcome of the present analysis is that it supplies evidence about both the
thermal- and the viscous layer. Using (38) and (40) we find

N

aT/a = o~ (42)

The figures of Ostrach [2] about free convection at large Prandtl numbers
confirm qualitatively expression (42). As one is left with a certain amount
of uncertainty in choosing the outer edge of a boundary layer the = sign
could be replaced best by a ~ sign. Bearing in mind that for o < 1 the
thermal boundary layer is predominant, while for o > 1 this is the case
with the viscous layer, both formulas (32) and (42) lead to

6,/6. ~ of. (43)

After having thrown light upon the different aspects of large Prandtl
number free convection boundary layer flow, it may have become clear
that the cnly way to solve it realistically is be using the method of matched
inner- and outer expansions. The inner problem can be studied by working
in the exiguous dimensions of the thermal boundary layer. On replacing
6 in (9) and (12) by é; the substitution of (37) and (38) in (20) and (21)
then leads to the following momentum- and energy equation

~ — 9

g, g8 .50 80, g (44)
Ix 9y 8372
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In solving these equations one has to use the inner boundary conditions
(conditions at the wall). The remaining conditions for § — oo have to be
found through matching with the solution of the outer problem.

Inserting the expressions (37) and (39) in the equations (20) and (21) we
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scale up to the larger dimensions of the complete viscous layer. The
equations become

- — 2.
td+vd-218, 7, (46)
X y 3?2
. — Qe
a{agé}erv%}:aT (47)
y 35,2

At first sight it seems rather contradictory that the buoyancy term in the
momentum equation contains the large parameter o, We should, however,
remember that for the main term of the outer expansion the temperature
is exactly equal to zero. As a consequence the buoyancy term plays, as
expected, no part in the main term of the outer expansion. This main term
is a solution of the differential equation
2 —
- U (48)
952
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and has to satisfy the outer boundary conditions @ — 0 as § —e. The re-
maining inner boundary conditions have to be found through matching with
the inner problem according to the well-known matching rule (see [6]).

The author is pursuing further study on this subject by applying matched
asymptotic expansions to a large Prandtl number problem.

6. Conclusions

Although separate analyses have been performed for extreme values of
the Prandtl number it may be expected that the results drawn therefrom
are qualitatively consistent for a larger Prandtl number range as long as
in this range the basic assumptions remain the same qualitatively. Conse-
quently the results obtained for small Prandtl numbers are expected to
give information for o < 1, while those found for large Prandtl numbers
are believed to be valuable for ¢ > 1, Hence for ¢ < 1, we have that the
boundary layer approximations are valid provided

Gr/M2

Fig,2. Conditions for boundary layer approximations, Double shaded: present work; single shaded: Ostrach

[2].
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o Gri > M. (49)

Here we have rephrased equation (26) through introduction of a very large
number M so as to give it a more definite character. For o > 1 we find
through (41) the analogwus condition

ot Grt > M.- (50)

Although near o = 1 the graph of figure 2 may have to be changed some-
what it clearly exhibits the result of the present analysis. While Ostrach's
analysis merely gives Grz>M the present investigations reveal that stricter
rules have to be imposed upon the Grashof number if the boundary layer
approximations are to be valid, The single shaded region applies to the
condition of Ostrach while the double shaded region is a result of the
present investigations.
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NOMENCLATURE

(2

specific heat

acceleration due to gravity

Grashof number (7)

characteristic length (9)

large number

pressure

temperature

wall~temperature

ambient temperature

longitudinal velocity (x-direction)
characteristic velocity (9)

normal velocity (y-direction)
longitudinal coordinate (along the plate)
normal coordinate (normal to the plate}

o

PoHT o

8

- X < =

Greek symbols

B coefficient of thermal expansion
6 non-dimensional thickness of the boundary layer (9)
6v non-dimensional thickness of the viscous boundary layer
6T non-dimensional thickness of the thenmal boundary layer
€ small coefficient (2)
X coefficient of heat conduction
v kinematic viscosity
P density of the fluid
A, density of the ambient fluid
o Prandtl number (8)
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